If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5x^2+30x+25=0
a = 2.5; b = 30; c = +25;
Δ = b2-4ac
Δ = 302-4·2.5·25
Δ = 650
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{650}=\sqrt{25*26}=\sqrt{25}*\sqrt{26}=5\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-5\sqrt{26}}{2*2.5}=\frac{-30-5\sqrt{26}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+5\sqrt{26}}{2*2.5}=\frac{-30+5\sqrt{26}}{5} $
| -56n-17=13 | | x+62=5x+26 | | 10x-20=-50 | | 13/6x+1/3=1/2x-11/2 | | 2(x+3)=54 | | x/11-8=7/22 | | (6x-5)+(12x-5)=180 | | 6-10x+15=4x+7 | | 9–4(2p–1)=41 | | 25-3p=-8+8(1-p) | | 4.13x10^-8/0.04x10^5= | | 15=-(13+p) | | 10=4x^2+2x | | 6(x+3)-9(3x-6)=18 | | 0=t^2+1.5t+7.4 | | x+0,15x=2000 | | 7x+5(3x-7)=3(4x-1)-8(x+4) | | -3(2y-1)=15 | | P(x)=x^2-7x^2+36 | | 3/4(c+8)=12 | | (2/512.75x-1/10)=5 | | 4(2x-1)=3B-4 | | 124=7x-2(-5x+6) | | -7=v-8 | | X/3+x/4=100 | | y/11+2=-15 | | 3x=x/2+40 | | -9+w=8 | | 6+8-13x+10=4-6x-11+4x | | 3x+3x=15 | | 9x-1+5x+7=180 | | 12c^2+29c+15=0 |